
i

Parking Slot Prediction and Face Recognition based Parked

Vehicle Theft Prevention in Smart Parking System using

Deep Learning

ii

Abstract

More than a million cars are on the roadways of a contemporary major city,

but more parking spots are needed to accommodate them. Locating vacant parking

places in most contemporary cities might take time, especially during busy periods

like festival seasons. In the traditional parking system, drivers face considerable

losses in terms of money, productivity and time which is wasted in search of parking

spots in densely populated areas. Hence, it can be said that the traditional parking

systems are not capable of providing a smooth parking experience to the drivers along

with reducing the parking search traffic on the roads. This highlights the rationale of

adopting advanced technologies to make the urban transport system modern and ease

the problem faced by the drivers. This project proposes a Smart Parking System

utilizing Edge Computing and Deep Learning algorithms to seamlessly link multiple

parking stations into a unified network, establishing a shared parking system. To

address security concerns in highly restricted areas such as residential zones, military

bases, and government buildings, the system functions as a centralized automatic

vehicle identifier for owner verification. Deep Learning algorithms, such as

Convolutional Neural Networks used to recognize the driver/owner face of a vehicle

during the departure phase, fortifying security measures and thwarting potential

vehicle theft. By implementing facial recognition at both entry and exit points, the

system ensures that only authorized individuals gain access to their associated

vehicles. Transparent communication of access privileges is facilitated through a user

interface at the exit gate, allowing drivers to ascertain whether they are granted or

denied entry to a specific parking station. The proposed system ensures real-time

decision-making, reducing the time spent searching for parking and contributing to

the overall efficiency and security of urban parking environments.

iii

LIST OF TABLES

SI.No Table No Title of Tables Page No

5.1 1 Parking Station 16

5.2 2 User Register 16

5.3 3 Booking 17

5.4 4 Car Entry 17

5.5 5 Parking Details 18

5.6 6 Exit 18

5.7 7 Payment 18

5.8 8 Notification 19

iv

LIST OF FIGURES

SI.No Figure No Title of Figures Page No

5.1 1 Architecture Diagram 11

5.2 2 Data Flow Diagram Level 0 12

5.3 3 Data Flow Diagram Level 1 13

5.4 4 Data Flow Diagram Level 2 14

5.5 5 ER Diagram 15

TABLE OF CONTENTS

Chapter No Title Page Number

Acknowledgements i

Declaration ii

Bona-fide Certificate iii

Abstract iv

List of Tables v

List of Figures vi

1 Introduction 1

2 Project Description 4

3 System Analysis 7

4 System Specification 10

5 System Design 11

6 Software Description 20

7 System Implementation 27

8 System Testing 40

9 Screenshots 48

10 Conclusion 53

11 Future Enhancement 54

References 58

1

CHAPTER 1

INTRODUCTION

1.1. Overview
Parking is the act of stopping and disengaging a vehicle and leaving it unoccupied.

Parking on one or both sides of a road is often permitted, though sometimes with

restrictions. Some buildings have parking facilities for use of the buildings' users. Car

parking is essential to car-based travel. Cars are typically stationary around per cent of

the time. The availability and price of car parking supports and subsidize car

dependency.

A parking space, parking place or parking spot is a location that is designated

for parking, either paved or unpaved. It can be in a parking garage, in a parking lot or

on a city street. The space may be delineated by road surface markings. Parking

facilities can be divided into public parking and private parking.

 Public parking is managed by local government authorities and available for

all members of the public to drive to and park in.

 Private parking is owned by a private entity. It may be available for use by the

public or restricted to customers, employees or residents.

Such facilities may be on-street parking, located on the street, or off-street parking,

located in a parking lot or parking garage.

1.1.1. Types of Parking

Parking comes in various forms, each tailored to specific needs and space

requirements. Understanding the different types of parking can help drivers choose

the most suitable option for their situation. Here are the main types of parking:

 Angle Parking

https://en.wikipedia.org/wiki/Car_dependency
https://en.wikipedia.org/wiki/Car_dependency
https://en.wikipedia.org/wiki/Parking
https://en.wikipedia.org/wiki/Parking_garage
https://en.wikipedia.org/wiki/Parking_lot
https://en.wikipedia.org/wiki/Street
https://en.wikipedia.org/wiki/Road_surface_marking
https://en.wikipedia.org/wiki/Parking_lot

2

In this type of parking, cars are parked at an angle. In most cases, the cars face one

direction. It is easy to park in and move out of an angular parking setting, provided

everyone follows the rules. Since it is easy to simply accelerate and zoom ahead from

angle parking, you need to be alert while accelerating. Give the right signals and be

on the lookout for signals from fellow drivers.

 Perpendicular Parking

This type of parking is common in parking lots, where people park their cars for a

longer duration. Such type of parking is like angle parking, but the angle here is

perpendicular to the curb ahead. Cars will be parked in a 90-degree angle. You need

to ensure that the tires of your car are pointing straight ahead and the car is positioned

at the centre of the allocated parking spot in a perpendicular parking area.

 Parallel Parking

This type of parking is usually seen on the roads, where cars are parked parallel to the

road. Parallel Parking requires a certain amount of skill as it usually needs the driver

to park in between two cars – one ahead and one behind. Entering and exiting Parallel

Parking needs focus on the surroundings and control on your driving.

 Illegal Parking

You need to park your vehicle only in designated areas. Parking your vehicle in spots

where parking is prohibited will lead to monetary penalties. Parking cars in No

Parking Zones and areas is an example of Illegal Parking.

 Lot Parking

If you are parking your car in a parking lot, you need to follow the rules and

regulations prescribed by that area. They might have different types of parking in

different areas for efficient usage of space.

 Bay Parking

Bay parking often involves reversing your car in an allocated area. There will be cars

around you or space for cars around you. Therefore, you need to be considerate of

them and park accordingly.

 Parking Between Two Vehicles

Irrespective of the type of parking, you need to be alert and attentive while parking

between two vehicles. One of the most common issues faced when a car is parked

between two vehicles is – a dent on the adjoining car’s door while opening your door

or a scratch leading to loss of paint.

3

1.1.2. Ill Effects of Parking

Parking has some ill-effects like congestion, accidents, pollution, obstruction to fire-

fighting operations etc.

 Congestion: Parking takes considerable street space leading to the lowering of

the road capacity. Hence, speed will be reduced, journey time and delay will

also subsequently increase. The operational cost of the vehicle increases

leading to great economical loss to the community.

 Accidents: Careless manoeuvring of parking and unparking leads to accidents

which are referred to as parking accidents. Common type of parking accidents

occurs while driving out a car from the parking area, careless opening of the

doors of parked cars, and while bringing in the vehicle to the parking lot for

parking.

 Environmental pollution: They also cause pollution to the environment

because stopping and starting of vehicles while parking and unparking results

in noise and fumes. They also affect the aesthetic beauty of the buildings

because cars parked at every available space creates a feeling that building

rises from a plinth of cars.

 Obstruction to firefighting operations: Parked vehicles may obstruct the

movement of firefighting vehicles. Sometimes they block access to hydrants

and access to buildings.

.

4

.CHAPTER 2

PROJECT DESCRIPTION

2.1. AIM AND OBJECTIVE
The aim of the project is to design, develop, and implement a Smart Parking

System that addresses the existing challenges in urban parking systems. The primary

goal is to create an innovative and efficient solution that enhances the overall parking

experience for users while optimizing space utilization, improving security measures,

and contributing to a more sustainable and streamlined urban mobility.

Objectives

 To provide real-time parking updates for user convenience.

 To optimize space allocation, reducing congestion.

 To enhance security with facial recognition and vehicle identification.

 To develop a user-friendly interface for seamless interaction.

 To establish a unified network for cohesive parking management.

 To ensure transparent access control for a smooth entry-exit process.

 To streamline tariff management for cost-efficient parking.

 To integrate vehicle theft prevention measures using facial recognition.

 To implement a centralized monitoring dashboard for security.

 To ensure technological adaptability and seamless integration.

 To contribute to urban efficiency by reducing congestion and emissions.

 To provide accessible parking options for individuals with disabilities.

 To utilize data-driven insights for informed decision-making.

 To minimize environmental impact by reducing fuel consumption.

 To foster collaboration among stakeholders for system sustainability.

5

2.2. FEATURE OF THE SYSTEM
The Feature of the System design and implementation of a comprehensive

system that addresses the challenges associated with parking in densely populated

urban environments. The Smart Parking Web App will offer real-time updates on

parking space availability, optimize the allocation and utilization of parking spaces,

and enhance security through advanced features such as facial recognition and

automatic vehicle identification. The user-centric interface will cater to the needs of

drivers, parking space providers, and administrators, ensuring a seamless and intuitive

experience. The project will establish a unified network of parking stations,

streamlining parking processes and contributing to a cohesive parking ecosystem.

Transparent access control, cost-efficient tariff management, and proactive vehicle

theft prevention measures will be integrated to enhance overall system functionality.

The development includes a centralized monitoring dashboard for efficient security

oversight, ensuring a quick response to potential security issues. The Smart Parking

Web App's technological adaptability and focus on urban efficiency aim to reduce

congestion, minimize environmental impact, and contribute to a more sustainable and

streamlined urban mobility experience.

2.3. PROJECT DESCRIPTION
The Smart Parking project represents a state-of-the-art solution addressing the

complexities of urban parking management. This comprehensive system is built on a

robust technology stack, incorporating Python for backend logic, Flask as the web

framework, MySQL for database functionality, and Bootstrap for an intuitive frontend

design. The Smart Parking Web App seamlessly integrates various modules to

optimize parking space utilization, enhance user experience, and prioritize security.

Users can effortlessly register, log in, and access real-time data on parking space

availability. The system facilitates smooth reservations, integrates with navigation

services, and employs transparent tariff structures with secure payment processing.

The admin dashboards empower administrators with efficient monitoring tools,

6

ensuring smooth system operation. The End User Dashboard, comprising User/Driver,

Parking Space Provider Admin, and Web Admin modules, offers an intuitive,

efficient, and secure experience for all stakeholders. Functionalities like User

Management, Parking Slot Management, Tariff Management, and Reservation

Modules contribute to seamless interaction, efficient allocation of spaces, and flexible

booking options. The Vehicle Theft Prevention module employs facial recognition

and deep learning algorithms for heightened security. The Payment Module ensures

secure and convenient transactions, and the Notification module keeps users and

administrators informed of crucial updates in real-time. The Smart Parking project

strives to revolutionize urban parking, introducing a more efficient, secure, and user-

centric parking environment.

..

7

CHAPTER 3

SYSTEM ANALYSIS

3.1. EXISTING SYSTEM

The traditional system of parking slot prediction relies on conventional methods and

technologies to estimate the availability of parking spaces.

 Experience-Based Predictions

Vehicle owners/drivers rely on their past experiences and knowledge of the parking

facility to predict parking space availability. This could involve knowing peak hours,

busy days, or areas with higher chances of finding vacant spots.

 Observational Assessments

Upon arrival at the parking facility, drivers make observational assessments by

visually scanning the parking lot for available spaces. This method heavily relies on

the driver's ability to gauge available spots based on their observations.

 Static Signage

Parking facilities may use static signs or boards at entrances to communicate general

information about parking availability. However, these signs are typically not

dynamic and may not reflect real-time changes in occupancy.

 Communication with Attendants

Drivers may communicate with parking attendants or staff to inquire about parking

availability. Attendants may provide guidance based on their visual assessment of the

parking lot.

 Trial and Error

In the absence of advanced prediction systems, drivers may resort to a trial-and-error

approach, entering different sections of the parking facility until they find an available

spot.

 IoT Sensors

Many systems deploy Internet of Things (IoT) sensors installed in parking spaces.

These sensors detect the presence or absence of vehicles and transmit this data in real

time.

8

 Camera-based Systems

Cameras with computer vision capabilities may be employed to monitor parking

spaces. These systems can recognize license plates, detect vehicle presence, and

contribute to real-time occupancy information.

3.1.1. Disadvantage
 Manual Observations lead to limited real-time visibility.

 Manual counting results in imprecise space availability estimates.

 Heavy reliance on attendants, which can be costly and inefficient.

 Lack of dynamic updates frustrates users in finding parking spaces.

 Minimal means for drivers to interact with the system.

 Initial high costs may pose a barrier to implementation.

 Technical glitches can disrupt parking infrastructure.

 Use of cameras or sensors raises user privacy concerns.

 Advanced technologies require regular and complex maintenance.

 Excludes non-digital users, creating an accessibility gap.

 Integrating new technologies into existing infrastructure can be difficult.

3.2. PROPOSED SYSTEM

The proposed system offering a seamless solution to the challenges associated with

traditional parking systems. Embracing advanced technologies, the system aims to

provide users with real-time information, efficient security measures, and a user-

friendly interface. The proposed system is developed using a robust technological

stack, including Python for programming, Flask for web development, MySQL for

database management, and Bootstrap for responsive and user-friendly design.

 Unified Parking Network

The proposed system establishes a unified network of parking stations, creating a

shared parking ecosystem. This interconnected network enhances overall efficiency

and ensures a more cohesive parking experience for users.

9

 User-Centric Interface

The Smart Parking Web App prioritizes a user-centric interface, ensuring a positive

and intuitive experience for drivers, parking space providers, and administrators. This

focus on user-friendliness enhances overall usability.

 Real-time Decision Support

With a focus on real-time decision-making, the proposed system significantly reduces

the time users spend searching for parking spaces. This dynamic approach enhances

the overall efficiency and responsiveness of urban parking environments.

 Advanced Security with Deep Learning

The system incorporates state-of-the-art Deep Learning algorithms, specifically

Convolutional Neural Networks (CNNs), to fortify security measures. Facial

recognition technology is employed at entry and exit points, ensuring that only

authorized individuals gain access to their associated vehicles.

 Vehicle Theft Prevention

Integrating a Vehicle Theft Prevention module, the system captures and recognizes

faces during entry and exit. This proactive measure adds an additional layer of

security, preventing potential vehicle theft.

 Security Measures for Restricted Areas

To address security concerns in highly restricted areas, such as military bases and

government buildings, the system employs additional security measures, including

advanced facial recognition and owner verification.
3.2.1. Advantage

 Real-time parking updates for users' convenience.

 Streamlined and seamless reservation process.

 Efficient allocation of parking spaces, reducing congestion.

 Advanced security with facial recognition technology.

 Improved traffic flow and urban mobility.

 Proactive vehicle theft prevention measures.

 Centralized monitoring for quick response to security alerts.

 User-friendly interfaces for drivers and administrators.

 Data-driven decisions through analytics insights.

10

CHAPTER 4

SYSTEM SPECIFICATION

HARDWARE REQUIREMENTS:

 Processors : Intel® Core™ i5 processor 4300M at 2.60 GHz or

2.59 GHz (1 socket, 2 cores, 2 threads per core), 16 GB of DRAM

 Disk space : 320 GB

 Operating systems: Windows® 10, macOS*, and Linux*

SOFTWARE REQUIREMENTS:

 Front End : Python 3.7.4(64-bit) or (32-bit)

 IDE : Flask 1.1.

 Back End : MySQL 5.

 Server : Wampserver 2i

 Blockchain : JSON

11

CHAPTER 5

SYSTEM DESIGN

5.1 CONTEXT LEVEL DIAGRAM

5.1. Fig 1 : Architecture Diagram

Register/Login

Search Parking Space

Reserve & Booking

Cancel or Extend Booking

Payment

Receive Notification

Register/Login

Update Parking Space

Parking Slot Management

Tariff Management

Boking Management

Payment

Send Notification

System Maintenance

User Management

Approve Parking Provider

Login

Smart Parking Web Admin
Smart Parking Web App

Parking Space Provider
Driver/Owner/User

Capture Face at Entry

CNN Build and train

Capture Face at Exit

Predict Parked User/Other

Send Alert URL to Owner

Receive Theft Alert

Parking Entry or Exit

12

3.2. DATA FLOW DIAGRAM

Level 0

5.2. Fig 2 : Data Flow Diagram Level 0

13

Level 1

5.3. Fig 3 : Data Flow Diagram Level 1

14

Level 2

5.4. Fig 4 : Data Flow Diagram Level 2

15

3.3. ER DIAGRAM

5.5. Fig 5 : ER Diagram

16

3.4. DATABASE DESIGN

Table name: Parking Station

S.no Field Data type Field size Constraint Description

1 Id Int 11 Null Parking Id

2 Station Name Varchar 20 Null Station Name

3 Number of Slot Int 11 Null Number of slot

4 Area Varchar 30 Null Parking Area

5 City Varchar 30 Null City

6 Latitude Varchar 20 Null Latitude

7 Longitude Varchar 20 Null Longitude

8 Station Id Varchar 20 Primary key Station Id

9 Password Varchar 20 Null Password

10 Register date Timestamp Timestamp Null Register date

Table name: User Register

S.no Field Data type Field size Constraint Description

1 Id Int 11 Null User id

2 Name Varchar 20 Null User Name

3 Address Varchar 40 Null User Address

4 Mobile Number Bigint 20 Null User Mobile
Number

5 Email Varchar 30 Null User Email

6 Bank Account
Number

Varchar 30 Null User Bank
Account Number

7 Card Number Varchar 20 Null User Card
Number

17

8 Bank Name Varchar 20 Null Bank Name

9 User Name Varchar 20 Primary key User Name

10 Password Varchar 20 Null User Password

11 Register date Timestamp Timestamp Null Register date

Table name: Booking

S.no Field Data type Field size Constraint Description

1 Id Int 11 Null Id

2 Booking Id Int 11 Primary key Booking Id

3 User Name Varchar 20 Null User Name

4 Station Id Varchar 30 Null Station Id

5 Car Number Varchar 20 Null Car Number

6 Slot Number Int 11 Null Slot Number

7 Booking Date Timestamp Timestamp Null Booking date

Table name: Car Entry

S.no Field Data type Field size Constraint Description

1 Id Int 11 Null Id

2 Booking Id Varchar 20 Foreign key Booking Id

3 Driver Face
Image

Varchar 30 Null Driver Face
Image

4 Pre-processed
image

Varchar 30 Null Pre-processed
image

5 Extracted
Feature

Varchar 30 Null Extracted
Feature

6 Classified
image

Varchar 30 Null Classified image

18

Table name: Parking Details

S.no Field Data type Field size Constraint Description

1 Booking Id Int 11 Primary key Booking Id

2 User Name Varchar 20 Foreign key User Name

3 Station Id Varchar 20 Null Station Id

4 Parking In date Varchar 15 Null Parking In date

5 In Time Varchar 15 Null In Time

6 Parking Out
date

Varchar 15 Null Parking Out date

7 Out Time Varchar 15 Null Out Time

Table name: Car Exit

S.no Field Data type Field size Constraint Description

1 Id Int 11 Null Id

2 Booking Id Varchar 20 Foreign key Booking Id

3 Test Image Varchar 30 Null Test Image

4 Verify Status Int 11 Null Verify Status

5 Date Time Timestamp Timestamp Null Date Time

Table name: Payment

S.no Field Data
type

Field size Constraint Description

1 Id Int 11 Null Id

2 Booking Id Varchar 20 Primary key Booking Id

3 User Name Varchar 40 Null User Name

4 Station Id Bigint 20 Null Station Id

19

5 Parking Amount Varchar 40 Null Parking Amount

6 Payment status Varchar 20 Null Payment status

Table name: Notification

S.no Field Data type Field size Constraint Description

1 Id Int 11 Null Id

2 User Name Varchar 20 Foreign key User Name

3 Booking Alert Varchar 20 Null Booking alert

4 Unknown face
alert

Varchar 20 Null Unknown face
alert

5 Paid Alert Varchar 20 Null Paid Alert

6 Date Time Timestamp Timestamp Null Date Time

20

CHAPTER 6

SOFTWARE DESCRIPTION

6.3.1. PYTHON 3.7.4

Python is a general-purpose interpreted, interactive, object-oriented, and high-level

programming language. It was created by Guido van Rossum during 1985- 1990. Like

Perl, Python source code is also available under the GNU General Public License

(GPL). This tutorial gives enough understanding on Python programming language.

Python is a high-level, interpreted, interactive and object-oriented scripting language.

Python is designed to be highly readable. It uses English keywords frequently where

as other languages use punctuation, and it has fewer syntactical constructions than

other languages. Python is a MUST for students and working professionals to become

a great Software Engineer specially when they are working in Web Development

Domain.

Python is currently the most widely used multi-purpose, high-level programming

language. Python allows programming in Object-Oriented and Procedural paradigms.

Python programs generally are smaller than other programming languages like Java.

Programmers have to type relatively less and indentation requirement of the language,

makes them readable all the time. Python language is being used by almost all tech-

giant companies like – Google, Amazon, Facebook, Instagram, Dropbox, Uber… etc.

The biggest strength of Python is huge collection of standard library which can be

used for the following:

 Machine Learning

 GUI Applications (like Kivy, Tkinter, PyQt etc.)

 Web frameworks like Django (used by YouTube, Instagram, Dropbox)

 Image processing (like OpenCV, Pillow)

 Web scraping (like Scrapy, BeautifulSoup, Selenium)

 Test frameworks

21

 Multimedia

 Scientific computing

 Text processing and many more.

6.3.2. Pandas

pandas is a fast, powerful, flexible and easy to use open source data analysis and

manipulation tool, built on top of the Python programming language. pandas is a

Python package that provides fast, flexible, and expressive data structures designed to

make working with "relational" or "labeled" data both easy and intuitive. It aims to be

the fundamental high-level building block for doing practical, real world data analysis

in Python.

Pandas is mainly used for data analysis and associated manipulation of tabular data in

Data frames. Pandas allows importing data from various file formats such as comma-

separated values, JSON, Parquet, SQL database tables or queries, and Microsoft Excel.

Pandas allows various data manipulation operations such as merging, reshaping,

selecting, as well as data cleaning, and data wrangling features. The development of

pandas introduced into Python many comparable features of working with Data

frames that were established in the R programming language. The panda’s library is

built upon another library NumPy, which is oriented to efficiently working with

arrays instead of the features of working on Data frames.

6.3.3. NumPy

NumPy, which stands for Numerical Python, is a library consisting of

multidimensional array objects and a collection of routines for processing those arrays.

Using NumPy, mathematical and logical operations on arrays can be performed.

22

NumPy is a general-purpose array-processing package. It provides a high-

performance multidimensional array object, and tools for working with these arrays.

6.3.4. Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and interactive

visualizations in Python. Matplotlib makes easy things easy and hard things possible.

Matplotlib is a plotting library for the Python programming language and its

numerical mathematics extension NumPy. It provides an object-oriented API for

embedding plots into applications using general-purpose GUI toolkits like Tkinter,

wxPython, Qt, or GTK.

6.3.5. Seaborn

Seaborn is a library for making statistical graphics in Python. It builds on top

of matplotlib and integrates closely with pandas data structures. Visualization is the

central part of Seaborn which helps in exploration and understanding of data.

Seaborn offers the following functionalities:

 Dataset oriented API to determine the relationship between variables.

 Automatic estimation and plotting of linear regression plots.

 It supports high-level abstractions for multi-plot grids.

 Visualizing univariate and bivariate distribution.

6.3.6. Scikit Learn

scikit-learn is a Python module for machine learning built on top of SciPy and is

distributed under the 3-Clause BSD license.

Scikit-learn (formerly scikits. learn and also known as sklearn) is a free software

machine learning library for the Python programming language. It features various

https://matplotlib.org/
https://pandas.pydata.org/

23

classification, regression and clustering algorithms including support-vector machines,

random forests, gradient boosting, k-means and DBSCAN, and is designed to

interoperate with the Python numerical and scientific libraries NumPy and SciPy.

6.3.7. MYSQL

MySQL tutorial provides basic and advanced concepts of MySQL. Our MySQL

tutorial is designed for beginners and professionals. MySQL is a relational database

management system based on the Structured Query Language, which is the popular

language for accessing and managing the records in the database. MySQL is open-

source and free software under the GNU license. It is supported by Oracle Company.

MySQL database that provides for how to manage database and to manipulate data

with the help of various SQL queries. These queries are: insert records, update records,

delete records, select records, create tables, drop tables, etc. There are also given

MySQL interview questions to help you better understand the MySQL database.

MySQL is currently the most popular database management system software used for

managing the relational database. It is open-source database software, which is

supported by Oracle Company. It is fast, scalable, and easy to use database

management system in comparison with Microsoft SQL Server and Oracle Database.

It is commonly used in conjunction with PHP scripts for creating powerful and

dynamic server-side or web-based enterprise applications. It is developed, marketed,

and supported by MySQL AB, a Swedish company, and written in C programming

language and C++ programming language. The official pronunciation of MySQL is

not the My Sequel; it is My Ess Que Ell. However, you can pronounce it in your way.

Many small and big companies use MySQL. MySQL supports many Operating

Systems like Windows, Linux, MacOS, etc. with C, C++, and Java languages.

24

6.3.8. WAMPSERVER

WampServer is a Windows web development environment. It allows you to create

web applications with Apache2, PHP and a MySQL database. Alongside,

PhpMyAdmin allows you to manage easily your database.

WAMPServer is a reliable web development software program that lets you create

web apps with MYSQL database and PHP Apache2. With an intuitive interface, the

application features numerous functionalities and makes it the preferred choice of

developers from around the world. The software is free to use and doesn’t require a

payment or subscription.

6.3.9. BOOTSTRAP 4

Bootstrap is a free and open-source tool collection for creating responsive websites

and web applications. It is the most popular HTML, CSS, and JavaScript framework

for developing responsive, mobile-first websites.

It solves many problems which we had once, one of which is the cross-browser

compatibility issue. Nowadays, the websites are perfect for all the browsers (IE,

Firefox, and Chrome) and for all sizes of screens (Desktop, Tablets, Phablets, and

Phones). Easy to use: Anybody with just basic knowledge of HTML and CSS can

start using Bootstrap

Responsive features: Bootstrap's responsive CSS adjusts to phones, tablets, and

desktops

25

Mobile-first approach: In Bootstrap, mobile-first styles are part of the core

framework

Browser compatibility: Bootstrap 4 is compatible with all modern browsers (Chrome,

Firefox, Internet Explorer 10+, Edge, Safari, and Opera)

3.3.10. FLASK

Flask is a web framework. This means flask provides you with tools, libraries and

technologies that allow you to build a web application. This web application can be

some web pages, a blog, a wiki or go as big as a web-based calendar application or a

commercial website.

Using an IDE

As good as dedicated program editors can be for your programming productivity,

their utility pales into insignificance when compared to Integrated Developing

Environments (IDEs), which offer many additional features such as in-editor

debugging and program testing, as well as function descriptions and much more.

Flask is often referred to as a micro framework. It aims to keep the core of an

application simple yet extensible. Flask does not have built-in abstraction layer for

database handling, nor does it have formed a validation support. Instead, Flask

supports the extensions to add such functionality to the application. Although Flask is

rather young compared to most Python frameworks, it holds a great promise and has

already gained popularity among Python web developers. Let’s take a closer look into

Flask, so-called “micro” framework for Python. Flask was designed to be easy to use

and extend. The idea behind Flask is to build a solid foundation for web applications

of different complexity. From then on you are free to plug in any extensions you think

you need. Also you are free to build your own modules. Flask is great for all kinds of

http://flask.pocoo.org/
https://quintagroup.com/services/python

26

projects. It's especially good for prototyping. Flask is part of the categories of the

micro-framework. Micro-framework is normally framework with little to no

dependencies to external libraries. This has pros and cons. Pros would be that the

framework is light, there are little dependency to update and watch for security bugs,

cons is that sometime you will have to do more work by yourself or increase yourself

the list of dependencies by adding plugins.

27

CHAPTER 7

SYSTEM IMPLEMENTATION

IMPLEMENTATION PROCEDURES
The implementation of the Smart Parking System involves a meticulous

process to seamlessly integrate cutting-edge technologies and user-friendly interfaces.

Leveraging a robust technology stack with Python for backend logic, Flask as the web

framework, and MySQL for the database, the system is designed to revolutionize

urban parking environments. The implementation encompasses several key modules.

The Smart Parking Web App, the central component, allows users to register, log in,

and access real-time information on parking space availability. It facilitates easy

reservations, integrates with navigation services, and manages transparent tariff

structures with secure payment processing. The system also provides an intuitive

admin dashboard for efficient monitoring and control.

The End User Dashboard includes the User/Driver Dashboard, enabling account

creation, login, profile management, parking space search, reservation, and payment.

The Parking Space Provider Admin Dashboard empowers administrators to manage

parking slots, tariffs, booking confirmations, and user notifications. The Web Admin

Dashboard facilitates overall system control, including user management, registration

approvals, and system maintenance.

User Management ensures seamless interaction and security. Users can register, log in,

and update their profiles. Administrators efficiently manage user accounts, control

access permissions, and monitor activities through an audit trail. Notifications keep

users informed, and analytics provide valuable insights.

Parking Slot Management oversees the allocation, monitoring, and maintenance of

parking spaces. It includes adding, editing, and removing parking slots, real-time slot

availability, and location mapping. Tariff Management defines and manages pricing

structures, supporting dynamic pricing strategies, special tariffs, and integration with

payment gateways.

Parking Slot Finder helps users locate and reserve available parking spaces efficiently.

It includes search by location and time, real-time availability updates, filtering options,

map integration, and reservation preview. The Parking Slot Visualizer provides a

28

visual representation of available parking spaces with color-coded indicators and an

interactive map interface.

The Reservation Modules streamline the process of reserving parking spaces,

allowing users to visually select slots, specify arrival times, view tariff information,

and receive immediate confirmation. The Vehicle Theft Prevention module utilizes

facial recognition for added security during entry and exit, with immediate alerts for

potential unauthorized access.

The Payment Module ensures secure and convenient transactions, supporting various

payment methods. It seamlessly integrates with the Reservation and Booking system,

aligning payment details with specific reservations.

The Notification Module keeps users, providers, and administrators informed about

key events and updates in real-time. It allows users to customize notification

preferences, and security alerts are triggered for potential unauthorized access.

In summary, the Smart Parking System implementation is a comprehensive endeavor
that combines technological innovation with user-centric design. By addressing user
needs, ensuring security, and optimizing operational efficiency, the system aims to
transform the parking experience in urban environments.

SYSTEMMAINTANCE
Maintaining a Smart Parking System is crucial to ensure its continuous and efficient

operation. Here are key aspects of maintenance for a Smart Parking System:

1. Regular System Monitoring

 Implement a monitoring system that tracks the overall health of the

Smart Parking System in real-time.

 Monitor server performance, database operations, and the functioning

of critical modules.

2. Database Maintenance

 Regularly perform database maintenance tasks such as indexing,

optimization, and backup procedures.

 Ensure data integrity and resolve any inconsistencies in the database.

3. Software Updates and Upgrades

 Stay current with software updates and patches for the entire system,

including the backend logic, web framework, and database.

29

 Schedule regular system upgrades to leverage new features, improve

security, and address any bugs or vulnerabilities.

4. Hardware Maintenance

 Monitor the health of physical hardware components such as servers,

sensors, cameras, and networking equipment.

 Replace or upgrade hardware components as needed to prevent system

failures.

5. Security Audits and Updates

 Conduct regular security audits to identify and address potential

vulnerabilities.

 Update security protocols and implement the latest technologies to

safeguard against cyber threats.

6. User Support and Training

 Provide ongoing user support to address any issues or queries from

end-users.

 Conduct training sessions for both administrators and end-users to

ensure they are familiar with system features and functionalities.

7. Incident Response and Troubleshooting

 Develop and regularly update an incident response plan to address

system failures, security breaches, or other emergencies.

 Establish a troubleshooting process to quickly identify and resolve any

issues reported by users or detected through system monitoring.

8. Data Backups and Recovery

 Implement regular data backup procedures to prevent data loss in the

event of system failures.

 Test data recovery processes to ensure the system can be quickly

restored to normal operation.

9. Compliance Checks

 Regularly review and ensure compliance with relevant data protection

regulations, industry standards, and legal requirements.

 Update system features to align with changing compliance standards.

10. Performance Optimization

 Analyze system performance regularly and optimize resource

utilization for better efficiency.

30

 Identify and address any bottlenecks or performance issues that may

impact user experience.

11. Notification System Maintenance

 Ensure the proper functioning of the notification module to keep users

and administrators informed of critical events.

 Test and verify the effectiveness of real-time alerts and notifications.

12. Documentation Update

 Keep system documentation up-to-date, including manuals, standard

operating procedures, and troubleshooting guides.

 Document any changes or updates made to the system architecture or

configurations.

Smart Parking System maintenance is an ongoing process that requires a proactive

approach to prevent issues, address emerging challenges, and enhance overall system

performance. Regular assessments and updates contribute to the system's reliability,

security, and user satisfaction.

:

SOURCECODE

Packages

from flask import Flask, render_template, Response, redirect, request, session, abort,

url_for

from camera import VideoCamera

import os

import base64

import mysql.connector

import hashlib

import datetime

from datetime import date

import cv2

import numpy as np

import time

from random import randint

import shutil

import imagehash

31

import PIL.Image

from PIL import Image

from PIL import ImageTk

import urllib.request

import webbrowser

Database Connection

mydb = mysql.connector.connect(

host="localhost",

user="root",

password="",

charset="utf8",

database="smart_parking_face"

Login

def login():

msg=""

if request.method=='POST':

uname=request.form['uname']

pwd=request.form['pass']

cursor = mydb.cursor()

cursor.execute('SELECT * FROM ev_register WHERE uname = %s AND pass = %s',

(uname, pwd))

account = cursor.fetchone()

if account:

session['username'] = uname

cursor.execute('SELECT * FROM ev_register WHERE uname = %s', (uname,))

dd = cursor.fetchone()

ff=open("name.txt","w")

ff.write(dd[1])

ff.close()

return redirect(url_for('userhome'))

else:

msg = 'Incorrect username/password!'

User Registration

def register():

32

msg=""

mycursor = mydb.cursor()

mycursor.execute("SELECT max(id)+1 FROM ev_register")

maxid = mycursor.fetchone()[0]

if maxid is None:

maxid=1

if request.method=='POST':

address=request.form['address']

name=request.form['name']

mobile=request.form['mobile']

email=request.form['email']

account=request.form['account']

card=request.form['card']

bank=request.form['bank']

uname=request.form['uname']

pass1=request.form['pass']

cursor = mydb.cursor()

sql = "INSERT INTO

ev_register(id,name,address,mobile,email,account,card,bank,amount,uname,pass)

VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)"

val = (maxid,name,address,mobile,email,account,card,bank,'10000',uname,pass1)

cursor.execute(sql, val)

mydb.commit()

print(cursor.rowcount, "Registered Success")

msg="sucess"

return redirect(url_for('login'))

Booking for Parking

if request.method=='POST':

carno=request.form['carno']

reserve=request.form['reserve']

sid=request.form['sid']

slot=request.form['slot']

mycursor = mydb.cursor()

mycursor.execute("SELECT max(id)+1 FROM ev_booking")

33

maxid = mycursor.fetchone()[0]

if maxid is None:

maxid=1

t = time.localtime()

rtime = time.strftime("%H:%M:%S", t)

today= date.today()

rdate= today.strftime("%d-%m-%Y")

rn=randint(1, 10)

cimage="c"+str(rn)+".jpg"

cursor = mydb.cursor()

sql = "INSERT INTO

ev_booking(id,uname,station,carno,reserve,slot,cimage,rtime,rdate,status) VALUES

(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)"

val = (maxid,uname,sid,carno,reserve,slot,cimage,rtime,rdate,'1')

cursor.execute(sql, val)

mydb.commit()

vid=str(maxid)

print(cursor.rowcount, "Booked Success")

Training for Face Verification

##Preprocess

path="static/frame/"+rs[2]

path2="static/process1/"+rs[2]

mm2 = PIL.Image.open(path).convert('L')

rz = mm2.resize((200,200), PIL.Image.ANTIALIAS)

rz.save(path2)

'''img = cv2.imread(path2)

dst = cv2.fastNlMeansDenoisingColored(img, None, 10, 10, 7, 15)

path3="static/process2/"+rs[2]

cv2.imwrite(path3, dst)'''

#noice

img = cv2.imread('static/process1/'+rs[2])

dst = cv2.fastNlMeansDenoisingColored(img, None, 10, 10, 7, 15)

fname2='ns_'+rs[2]

cv2.imwrite("static/process1/"+fname2, dst)

34

##bin

image = cv2.imread('static/process1/'+rs[2])

original = image.copy()

kmeans = kmeans_color_quantization(image, clusters=4)

Convert to grayscale, Gaussian blur, adaptive threshold

gray = cv2.cvtColor(kmeans, cv2.COLOR_BGR2GRAY)

blur = cv2.GaussianBlur(gray, (3,3), 0)

thresh = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,

cv2.THRESH_BINARY_INV,21,2)

Draw largest enclosing circle onto a mask

mask = np.zeros(original.shape[:2], dtype=np.uint8)

cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)

cnts = cnts[0] if len(cnts) == 2 else cnts[1]

cnts = sorted(cnts, key=cv2.contourArea, reverse=True)

for c in cnts:

((x, y), r) = cv2.minEnclosingCircle(c)

cv2.circle(image, (int(x), int(y)), int(r), (36, 255, 12), 2)

cv2.circle(mask, (int(x), int(y)), int(r), 255, -1)

break

Bitwise-and for result

result = cv2.bitwise_and(original, original, mask=mask)

result[mask==0] = (0,0,0)

cv2.imwrite("static/process1/bin_"+rs[2], thresh)

#RPN - Segment

img = cv2.imread('static/process1/'+rs[2])

gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

ret, thresh =

cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

kernel = np.ones((3,3),np.uint8)

opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2)

sure background area

sure_bg = cv2.dilate(opening,kernel,iterations=3)

Finding sure foreground area

35

dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5)

ret, sure_fg = cv2.threshold(dist_transform,0.7*dist_transform.max(),255,0)

Finding unknown region

sure_fg = np.uint8(sure_fg)

segment = cv2.subtract(sure_bg,sure_fg)

img = Image.fromarray(img)

segment = Image.fromarray(segment)

path3="static/process2/fg_"+rs[2]

segment.save(path3)

img = cv2.imread('static/process2/fg_'+rs[2])

gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

ret, thresh =

cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

kernel = np.ones((3,3),np.uint8)

opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2)

sure_bg = cv2.dilate(opening,kernel,iterations=3)

dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5)

ret, sure_fg = cv2.threshold(dist_transform,0.7*dist_transform.max(),255,0)

Finding unknown region

sure_fg = np.uint8(sure_fg)

segment = cv2.subtract(sure_bg,sure_fg)

img = Image.fromarray(img)

segment = Image.fromarray(segment)

path3="static/process2/fg_"+rs[2]

segment.save(path3)

image = cv2.imread(path2)

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

edged = cv2.Canny(gray, 50, 100)

image = Image.fromarray(image)

edged = Image.fromarray(edged)

path4="static/process3/"+rs[2]

edged.save(path4)

def kmeans_color_quantization(image, clusters=8, rounds=1):

h, w = image.shape[:2]

36

samples = np.zeros([h*w,3], dtype=np.float32)

count = 0

for x in range(h):

for y in range(w):

samples[count] = image[x][y]

count += 1

compactness, labels, centers = cv2.kmeans(samples,

clusters,

None,

(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10000,

0.0001),

rounds,

cv2.KMEANS_RANDOM_CENTERS)

centers = np.uint8(centers)

res = centers[labels.flatten()]

return res.reshape((image.shape))

Face Verification

def get_frame(self):

success, image = self.video.read()

#self.out.write(image)

cv2.imwrite("getimg.jpg", image)

face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

Read the frame

#_, img = cap.read()

Convert to grayscale

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Detect the faces

faces = face_cascade.detectMultiScale(gray, 1.1, 4)

#-Local Binary Patterns (LBP)

id = 0

recognizer = cv2.face.LBPHFaceRecognizer_create()

recognizer.read('trainer/trainer.yml')

cascadePath = "haarcascade_frontalface_default.xml"

faceCascade = cv2.CascadeClassifier(cascadePath);

37

font = cv2.FONT_HERSHEY_SIMPLEX

gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)

faces = faceCascade.detectMultiScale(

gray,

scaleFactor = 1.2,

minNeighbors = 5,

minSize = (int(self.minW), int(self.minH)),

Draw the rectangle around each face

j = 1

<script src="web_home/js/main.js"></script> <!-- Resource jQuery -->

<!-- //banner js -->

<!-- flexSlider --><!-- for testimonials -->

<script defer src="web_home/js/jquery.flexslider.js"></script>

<script type="text/javascript">

$(window).load(function(){

$('.flexslider').flexslider({

animation: "slide",

start: function(slider){

$('body').removeClass('loading');

}

});

});

</script>

<!-- //flexSlider --><!-- for testimonials -->

<!-- start-smoth-scrolling -->

<script src="web_home/js/SmoothScroll.min.js"></script>

<script type="text/javascript" src="web_home/js/move-top.js"></script>

38

<script type="text/javascript" src="web_home/js/easing.js"></script>

<script type="text/javascript">

jQuery(document).ready(function($) {

$(".scroll").click(function(event){

event.preventDefault();

$('html,body').animate({scrollTop:$(this.hash).offset().top},1000);

});

});

</script>

<!-- here stars scrolling icon -->

<script type="text/javascript">

$(document).ready(function() {

/*

var defaults = {

containerID: 'toTop', // fading element id

containerHoverID: 'toTopHover', // fading element

hover id

scrollSpeed: 1200,

easingType: 'linear'

};

*/

$().UItoTop({ easingType: 'easeOutQuart' });

});

39

</script>

<!-- //here ends scrolling icon -->

<!-- start-smoth-scrolling -->

<!-- //js-scripts -->

</body>

</html>

40

CHAPTER 8

SYSTEM TESTING

SYSTEM TESTING
System testing of the proposed system involves evaluating its functionality, usability,

security, and performance to ensure that it meets the requirements and expectations of

users, administrators, and other stakeholders. Here's a systematic approach to

conducting system testing:

 Functionality Testing

Test each module of the web app to ensure that it performs as expected according to

its specifications. Verify that users can register, log in, search for parking spaces,

make reservations, update their profiles, and perform other essential tasks smoothly.

Validate the functionality of administrative dashboards for managing parking spaces,

tariffs, users, reservations, and notifications. Test the accuracy and reliability of real-

time information updates, reservation management, and facial recognition-based

security measures.

 Usability Testing

Evaluate the user interface design for intuitiveness, consistency, and accessibility

across different devices and screen sizes. Conduct user walkthroughs to assess the

ease of performing common tasks such as searching for parking spaces, making

reservations, and updating profiles. Gather feedback from representative users to

identify any usability issues or areas for improvement in navigation, layout, and

interaction flow.

 Security Testing

Assess the effectiveness of security measures such as encryption, authentication,

authorization, and data protection mechanisms. Verify the integrity and

confidentiality of user data, payment transactions, and sensitive information stored in

the system.

Perform penetration testing to identify vulnerabilities and potential attack vectors, and

implement countermeasures to mitigate security risks.

 Performance Testing

Measure the responsiveness and scalability of the web app under various load

conditions, including peak usage periods. Conduct stress testing to determine the

41

system's stability and resilience under high traffic volumes or resource constraints.

Monitor system resources such as CPU usage, memory consumption, and network

bandwidth to identify any performance bottlenecks or optimization opportunities.

 Compatibility Testing

Validate the compatibility of the web app with different web browsers, operating

systems, and devices commonly used by users. Test the responsiveness and

functionality of the app across a range of devices, including desktops, laptops, tablets,

and smartphones.

 Integration Testing

Verify the seamless integration and interoperability of different modules within the

web app ecosystem. Test data exchange and communication between modules such as

user management, parking slot management, tariff management, payment processing,

and notification delivery.

 Regression Testing

Ensure that recent changes or updates to the web app have not introduced any new

defects or regressions. Re-run previously conducted tests to validate the continued

functionality and stability of the system after modifications or enhancements.

By systematically conducting these tests, the project can be evaluated and validated to

ensure its reliability, security, and usability in real-world urban parking environments.

Any issues or deficiencies identified during testing can be addressed promptly,

leading to a more robust and dependable solution for users and administrators alike.

Testing Methodologies

Functional Testing

 Unit Testing: Test individual modules of the web app, such as user

registration, login, reservation management, and notification systems, to

ensure they perform as expected.

 Integration Testing: Verify the interaction and data exchange between

different modules to ensure seamless integration and interoperability.

 System Testing: Conduct end-to-end testing of the entire system to validate

its functionality and behavior as a whole, including user interactions, database

operations, and external integrations.

42

Non-Functional Testing

 Usability Testing: Evaluate the user interface design and interaction flow to

ensure it is intuitive, consistent, and user-friendly.

 Performance Testing: Assess the responsiveness, scalability, and stability of

the web app under various load conditions to ensure it can handle expected

traffic volumes.

 Security Testing: Test the security features and mechanisms of the system to

identify vulnerabilities, ensure data protection, and prevent unauthorized

access.

 Compatibility Testing: Verify the compatibility of the web app with different

browsers, devices, and operating systems to ensure a consistent user

experience across platforms.

Automation Testing

 Regression Testing: Automate repetitive test cases to ensure that recent

changes or updates to the web app do not introduce new defects or regressions.

 Functional Testing: Automate test scenarios for critical functionalities to

expedite testing and improve test coverage.

 Load Testing: Use automated tools to simulate heavy user traffic and assess

the performance of the system under stress conditions.

Manual Testing

 Exploratory Testing: Allow testers to explore the web app freely to uncover

unexpected issues or usability concerns.

 Ad Hoc Testing: Perform unplanned testing to identify defects or

inconsistencies that may not be covered by formal test cases.

 User Acceptance Testing (UAT): Engage end-users to manually test the web

app and provide feedback on its functionality, usability, and overall

satisfaction.

Black Box Testing

Test the functionality of the web app without knowledge of its internal structure or

code implementation to simulate real-world user interactions and scenarios. Focus on

validating inputs, outputs, and system behavior based on specifications and

requirements.

43

White Box Testing

Inspect the internal structure and logic of the web app to ensure that all code paths are

tested and potential errors are identified. Verify the correctness of algorithms, data

structures, and error-handling mechanisms implemented in the system.

By employing a combination of these testing methodologies, the Smart Parking Web

App can undergo thorough evaluation and validation, resulting in a high-quality,

reliable, and user-friendly solution for urban parking management.

Test Cases and Expected Results

User Registration

Input: New user provides name, contact details, and preferred payment methods.

Expected Result: User account is successfully created in the system.

Actual Result: User account is created with provided details.

Status: Pass

Login Authentication

Input: User provides correct login credentials.

Expected Result: User is successfully authenticated and gains access to the dashboard.

Actual Result: User is authenticated and gains access to the dashboard.

Status: Pass

Search for Parking Space

Input: User specifies location and time preferences for parking.

Expected Result: System displays available parking spaces matching the criteria.

Actual Result: System displays relevant parking spaces based on the input.

Status: Pass

Reservation of Parking Space

Input: User selects a parking space and specifies time and duration for reservation.

Expected Result: Selected parking space is reserved for the specified time.

Actual Result: Parking space is successfully reserved as per user's request.

Status: Pass

Cancellation of Booking:

Input: User cancels a previously made parking reservation.

Expected Result: Reserved parking space becomes available again, and any charges

are refunded.

Actual Result: Reserved parking space is freed up, and cancellation is processed.

44

Status: Pass

Facial Recognition during Entry

Input: User's face is captured during vehicle entry.

Expected Result: System accurately identifies the user's face and grants access.

Actual Result: Facial recognition successfully identifies the user, allowing entry.

Status: Pass

Facial Recognition during Exit

Input: User's face is captured during vehicle exit.

Expected Result: System verifies user's identity and allows exit if matched with entry.

Actual Result: User's identity is verified, and exit is permitted upon successful match.

Status: Pass

Real-time Notifications

Input: Various triggers such as reservation confirmations, payment status changes,

and parking slot availability updates.

Expected Result: Users, administrators, and parking space providers receive timely

notifications.

Actual Result: Notifications are promptly delivered to relevant stakeholders based on

triggers.

Status: Pass

Payment Processing:

Input: User initiates payment for parking reservation.

Expected Result: Payment is securely processed, and user receives confirmation.

Actual Result: Payment is processed securely, and user receives confirmation of

successful transaction.

Status: Pass

System Maintenance

Input: Routine maintenance tasks and updates are scheduled.

Expected Result: System undergoes maintenance without affecting user experience.

Actual Result: Maintenance tasks are executed smoothly, and users are unaffected.

Status: Pass

45

Test Report

The System has undergone rigorous testing to ensure its functionality, reliability, and

security. This report summarizes the testing process, results, and conclusions.

Test Objective

The objective of testing the Smart Parking Web App is to verify its modules and

features, including user registration, login authentication, reservation management,

payment processing, and security measures such as facial recognition.

Test Scope

The testing scope encompasses all modules and functionalities of the Smart Parking

Web App, including user interfaces, administrative dashboards, backend logic,

database operations, and third-party service integrations.

Test Environment

The testing environment includes:

 Backend Logic: Python

 Web Framework: Flask

 Database: MySQL

 Frontend Design: Bootstrap

 Technologies: Facial recognition libraries, Payment gateways

Test Result

The testing results are as follows:

New User Registration: New users successfully created accounts with provided

details.

User Authentication: Users were authenticated and gained access to the dashboard

with correct login credentials.

Parking Space Search: The system displayed available parking spaces matching

user-specified location and time preferences accurately.

Reservation Management: Users successfully reserved parking spaces for specified

times, and cancellations were processed without issues.

Facial Recognition: Facial recognition accurately identified users during vehicle

entry and exit, granting or denying access accordingly.

Notification System: Users, administrators, and parking space providers received

timely notifications based on various triggers.

46

Payment Processing: Payment for parking reservations was securely processed, and

users received confirmation of successful transactions.

Maintenance: Routine maintenance tasks and updates were executed smoothly

without affecting user experience.

Test Conclusion

The Smart Parking Web App has successfully passed all test cases, demonstrating its

functionality, reliability, and security. With its user-friendly interfaces, efficient

reservation management, and robust security measures, the app presents a promising

solution to urban parking challenges. Further refinement and continuous testing will

ensure its ongoing effectiveness and reliability in real-world scenarios.

QUALITY ASSURANCE

Quality Assurance (QA) is a systematic process or set of activities

implemented within a project or organization to ensure that the products or services

delivered meet predefined quality standards and expectations. QA is an integral part

of the software development life cycle (SDLC) and is applicable to various industries

beyond software, including manufacturing, healthcare, and services.

4.2.1. Generic Risks:

 Technical Challenges: Implementing advanced technologies like facial

recognition and real-time data processing may pose technical challenges,

including system integration issues, compatibility concerns, and potential

software bugs.

 Data Accuracy and Integrity: Ensuring the accuracy and integrity of parking-

related data is critical. Inaccurate information on space availability or payment

processing errors can lead to user dissatisfaction and operational disruptions.

 User Adoption and Training: The success of the Smart Parking system relies

on user adoption. Risks related to a lack of user awareness, training, or

resistance to technology adoption could impact the project's overall

effectiveness.

Security Technologies and Policies
 Facial Recognition: The Vehicle Theft Prevention module utilizes facial

recognition technology. Risks associated with false positives/negatives,

47

privacy concerns, and potential system vulnerabilities need thorough

consideration and robust security measures.

 Secure Payment Gateway: The Payment Module relies on a secure payment

gateway. Risks include payment fraud, data breaches, and transaction security.

The implementation of encryption and compliance with industry standards are

crucial to mitigate these risks.

 Data Encryption: Ensuring end-to-end encryption for sensitive user and

payment data is essential. Risks associated with data interception during

transmission should be mitigated through robust encryption protocols.

Security Policies:

 Access Control Policies: Strict access control policies must be in place to

prevent unauthorized access to sensitive data. Role-based access ensures that

users and administrators have the appropriate level of access based on their

responsibilities.

 Data Privacy and Compliance: Compliance with data protection regulations is

imperative. Implementing policies that prioritize user privacy, secure data

storage, and adherence to legal requirements are essential components of the

security framework.

 Incident Response Plan: A comprehensive incident response plan should be

established to address security breaches or system failures promptly. This

includes protocols for notifying users, investigating incidents, and

implementing corrective actions.

 Regular Security Audits: Frequent security audits and vulnerability

assessments help identify and address potential security gaps. Regular updates

to security policies and protocols ensure the system remains resilient against

evolving threats.

In summary, ensuring the quality and security of the Smart Parking project involves

addressing generic risks through robust technical solutions and the implementation of

comprehensive security technologies and policies. Regular monitoring, updates, and

adherence to industry best practices are crucial for the success and sustainability of

the Smart Parking system.

48

CHAPTER 9

SCREENSHOTS

49

50

51

52

Online

53

CHAPTER 10

CONCLUSION

In conclusion, the project stands as a transformative solution poised to

revolutionize urban parking management. By leveraging advanced technologies and

innovative features, the project addresses the challenges associated with traditional

parking systems, providing users with a seamless and secure parking experience. The

integration of Edge Computing and Deep Learning algorithms establishes a robust

foundation for real-time decision-making and enhances the overall efficiency and

security of urban parking environments. The Smart Parking System's ability to link

multiple parking stations into a unified network fosters a shared parking ecosystem,

promoting optimal space utilization. The Vehicle Theft Prevention module,

incorporating facial recognition and deep learning, exemplifies the project's

commitment to security. This proactive approach not only safeguards parked vehicles

but also empowers owners to intervene swiftly in case of suspicious activities,

reinforcing user trust. The End User Dashboard, Parking Space Provider Admin

functionality, and Web Admin controls create a well-rounded and user-centric

platform. Users benefit from features like easy registration, intuitive parking slot

search, and transparent tariff information. Parking space providers gain tools for

efficient management, and administrators wield control over the system's overall

health and security. Looking ahead, the future scope of the project holds exciting

possibilities, from IoT integration and predictive analytics to collaborations with

smart city initiatives and advancements in user experience. The project is positioned

not only to meet the current demands of urban mobility but also to adapt and thrive in

the dynamic landscape of smart cities.

In essence, the project represents a significant step toward creating more

sustainable, secure, and user-friendly urban environments. As urbanization continues,

the project's contributions to traffic decongestion, environmental sustainability, and

enhanced security underscore its potential to shape the future of urban living. The

journey doesn't end here; the project is a dynamic solution ready to evolve with the

ever-changing needs of modern cities..

54

CHAPTER 11

FUTURE ENHANCEMENT

 Integration with IoT and Smart City Infrastructure:

 IoT Sensors and Devices: Deploy more IoT sensors across the city to gather real-

time data on parking spot availability and traffic conditions. This data can be used

to guide drivers to the nearest available parking spot efficiently.

 Smart Traffic Management: Integrate with the city’s traffic management systems

to optimize traffic flow and reduce congestion caused by vehicles searching for

parking.

 Advanced Analytics and AI:

 Predictive Analytics: Implement predictive analytics to forecast parking spot

availability based on historical data and current trends. This will help drivers

plan their trips better and reduce search time.

 Enhanced Deep Learning Models: Continuously train and improve the deep

learning models used for facial recognition and vehicle identification to

enhance accuracy and speed.

 Mobile Application Enhancements:

 User-friendly Interface: Improve the user interface of the mobile application

to make it more intuitive and user-friendly.

 Real-time Notifications: Provide real-time notifications about available

parking spots, parking duration alerts, and other relevant information.

 Reservation System: Allow users to reserve parking spots in advance through

the mobile app, reducing uncertainty and improving convenience.

55

 Dynamic Pricing and Payment Systems:

 Dynamic Pricing: Implement dynamic pricing strategies to manage demand

and optimize parking spot utilization. Prices can vary based on location, time

of day, and demand.

 Multiple Payment Options: Integrate multiple payment options, including

mobile payments, contactless payments, and digital wallets, to offer more

flexibility to users.

 Enhanced Security Features:

 Multi-factor Authentication: Introduce multi-factor authentication (MFA) for

added security. This could include biometric verification (fingerprint, facial

recognition) along with traditional methods.

 Anomaly Detection: Use machine learning algorithms to detect unusual

activities or security breaches in real-time and alert the authorities.

 Scalability and Flexibility:

 Cloud Integration: Migrate data storage and processing to the cloud to

enhance scalability and ensure that the system can handle large volumes of

data and users.

 Modular Design: Design the system with a modular architecture to allow

easy upgrades and integration of new features without disrupting the existing

system.

 Environmental Impact:

 Green Parking Initiatives: Promote green parking initiatives by providing

incentives for electric vehicles (EVs) and integrating EV charging stations

within parking facilities.

 Energy-efficient Operations: Optimize the energy usage of the parking

facilities by using energy-efficient lighting and automated systems.

56

 User and Stakeholder Engagement:

 Feedback Mechanism: Implement a robust feedback mechanism to gather

insights from users and stakeholders. Use this feedback to continuously

improve the system.

 Educational Campaigns: Conduct educational campaigns to inform the public

about the benefits of the smart parking system and how to use it effectively.

 Data Privacy and Compliance:

 Data Encryption: Ensure that all data collected and transmitted is encrypted

to protect user privacy.

 Regulatory Compliance: Stay updated with local and international data

protection regulations (e.g., GDPR) and ensure that the system complies with

all relevant laws.

 Community and Business Integration:

 Partnerships with Local Businesses: Establish partnerships with local

businesses to offer discounts or incentives for using the smart parking system.

 Community Programs: Develop community programs to promote the

adoption of smart parking solutions and encourage responsible parking habits.

 Remote Monitoring and Maintenance:

 Remote Diagnostics: Implement remote diagnostics and maintenance

capabilities to quickly identify and resolve issues with the parking system.

 24/7 Support: Provide 24/7 customer support to assist users with any

problems or queries related to the smart parking system.

57

 Global Expansion and Adaptation:

 International Adaptation: Adapt the smart parking system to meet the needs

of different cities and countries, taking into account local regulations, cultural

differences, and urban infrastructure.

 Scalability for Large Cities: Ensure the system is scalable to handle the

demands of larger cities with higher vehicle densities and more complex

traffic patterns.

58

REFERENCES

1. Eco Park: A Low-Cost and Sustainable Approach for Smart Parking Systems

Yash M Dalal;D R Kumar Raja;Um Ashwin Kumar 2023 World Conference

on Communication & Computing (WCONF) Year: 2023

2. Smart parking in the smart city application Jan Šilar;Jirí Růžička;Zuzana

Bělinovà;Martin Langr;Kristýna Hlubučková 2018 Smart City Symposium

Prague (SCSP) Year: 2018

3. Towards a Smart Parking Management System for Smart Cities Paul

Melnyk;Soufiene Djahel;Farid Nait-Abdesselam 2019 IEEE

International Smart Cities Conference (ISC2) Year: 2019

4. An IoT-based Eco-Parking System for Smart Cities Ibrahim Tamam;Shen

Wang;Soufiene Djahel 2020 IEEE International Smart Cities Conference

(ISC2) Year: 2020

5. An IoT based Smart Outdoor Parking System S GokulKrishna;J Harsheetha;S

Akshaya;D Jeyabharathi 2021 7th International Conference on Advanced

Computing and Communication Systems (ICACCS) Year: 2021

6. Smart parking system with pre & post reservation, billing and traffic app

Gayatri N. Hainalkar;Mousami S. Vanjale 2017 International Conference on

Intelligent Computing and Control Systems (ICICCS) Year: 2017

7. Smart Parking: Novel Framework of Secure Smart Parking Solution using 5G

Technology Aamir Anwar;Ijaz-ul-Haq;Nagham Saeed;Parisa Saadati 2021

IEEE International Smart Cities Conference (ISC2) Year: 2021

8. Smart Parking System (S-Park) – A Novel Application to Provide Real-

Time Parking Solution Abhijeet Anand;Abhinav Kumar;A N Mukunda

Rao;Anupam Ankesh;Ankur Raj 2020 Third International Conference on

Multimedia Processing, Communication & Information Technology (MPCIT)

Year: 2020

9. A navigation and reservation based smart parking platform using genetic

optimization for smart cities Ilhan Aydin;Mehmet Karakose;Ebru Karakose

2017 5th International Istanbul Smart Grid and Cities Congress and Fair

(ICSG) Year: 2017

https://ieeexplore.ieee.org/document/10235241/
https://ieeexplore.ieee.org/author/37089961829
https://ieeexplore.ieee.org/author/37089949464
https://ieeexplore.ieee.org/author/37089963982
https://ieeexplore.ieee.org/xpl/conhome/10234727/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10234727/proceeding
https://ieeexplore.ieee.org/document/8402667/
https://ieeexplore.ieee.org/author/37089143994
https://ieeexplore.ieee.org/author/37372122500
https://ieeexplore.ieee.org/author/37085428345
https://ieeexplore.ieee.org/author/37085428345
https://ieeexplore.ieee.org/author/37086416351
https://ieeexplore.ieee.org/author/37087634730
https://ieeexplore.ieee.org/xpl/conhome/8398215/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8398215/proceeding
https://ieeexplore.ieee.org/document/9071740/
https://ieeexplore.ieee.org/author/37088377485
https://ieeexplore.ieee.org/author/37088377485
https://ieeexplore.ieee.org/author/37320615400
https://ieeexplore.ieee.org/author/38272310600
https://ieeexplore.ieee.org/xpl/conhome/9055888/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9055888/proceeding
https://ieeexplore.ieee.org/document/9239041/
https://ieeexplore.ieee.org/author/37088580628
https://ieeexplore.ieee.org/author/37086230140
https://ieeexplore.ieee.org/author/37086230140
https://ieeexplore.ieee.org/author/37320615400
https://ieeexplore.ieee.org/xpl/conhome/9238770/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9238770/proceeding
https://ieeexplore.ieee.org/document/9441766/
https://ieeexplore.ieee.org/author/37088879073
https://ieeexplore.ieee.org/author/37088880318
https://ieeexplore.ieee.org/author/37088881405
https://ieeexplore.ieee.org/author/37088881405
https://ieeexplore.ieee.org/author/37088881569
https://ieeexplore.ieee.org/xpl/conhome/9441490/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9441490/proceeding
https://ieeexplore.ieee.org/document/8250772/
https://ieeexplore.ieee.org/author/37086330053
https://ieeexplore.ieee.org/author/37085756863
https://ieeexplore.ieee.org/xpl/conhome/8241057/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8241057/proceeding
https://ieeexplore.ieee.org/document/9562776/
https://ieeexplore.ieee.org/document/9562776/
https://ieeexplore.ieee.org/author/37088994497
https://ieeexplore.ieee.org/author/37088995181
https://ieeexplore.ieee.org/author/37088546126
https://ieeexplore.ieee.org/author/37088995493
https://ieeexplore.ieee.org/xpl/conhome/9562741/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9562741/proceeding
https://ieeexplore.ieee.org/document/9350429/
https://ieeexplore.ieee.org/document/9350429/
https://ieeexplore.ieee.org/author/37088699666
https://ieeexplore.ieee.org/author/37088698855
https://ieeexplore.ieee.org/author/37088702738
https://ieeexplore.ieee.org/author/37088702738
https://ieeexplore.ieee.org/author/37088701434
https://ieeexplore.ieee.org/author/37088699969
https://ieeexplore.ieee.org/xpl/conhome/9350328/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9350328/proceeding
https://ieeexplore.ieee.org/document/7947615/
https://ieeexplore.ieee.org/document/7947615/
https://ieeexplore.ieee.org/author/37530870300
https://ieeexplore.ieee.org/author/37429100300
https://ieeexplore.ieee.org/author/38547312400
https://ieeexplore.ieee.org/xpl/conhome/7939936/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7939936/proceeding

59

10. Project of an Intelligent Recommender System for Parking Vehicles

in Smart Cities Yuriy Pankiv;Nataliia Kunanets;Olga Artemenko;Nataliia

Veretennikova;Ruslan Nebesnyi 2021 IEEE 16th International Conference on

Computer Sciences and Information Technologies (CSIT) Year: 2021

11. Smart Parking System for Monitoring Cars and Wrong Parking Faris

Alshehri;A. H. M. Almawgani;Ayed Alqahtani;Abdurahman Alqahtani 2019

2nd International Conference on Computer Applications & Information

Security (ICCAIS) Year: 2019

12. Low cost smart parking system for smart cities D. Vakula;Yeshwanth Krishna

Kolli

13. 2017 International Conference on Intelligent Sustainable Systems (ICISS)

Year: 2017

14. ITS for Smart Parking Systems, towards the creation of smart city services

using IoT and cloud approaches Luis Felipe Herrera-Quintero;Julián Vega-

Alfonso;Diego Bermúdez;Luis Andres Marentes;Klaus Banse

2019 Smart City Symposium Prague (SCSP) Year: 2019

15. PARKIT: An Android-based Real Time Smart Parking System using IoT

Shruti Agarwal;Shagun Gupta;Piyush Agarwal;Garima Sharma;Vikas Tripathi

2023 10th International Conference on Computing for Sustainable Global

Development (INDIACom) Year: 2023

16. Relocating On-Street Parking to Smart Parking Structure for Optimizing the

Commercial Shared Street in Yeonnam-Dong, Seoul Ian Pranita 2023 10th

International Conference on ICT for Smart Society (ICISS) Year: 2023

Book References

1. "Python Crash Course" by Eric Matthes - Provides a comprehensive

introduction to Python programming, covering fundamental concepts and

practical examples.

2. "Learning MySQL" by Robin Nixon - Offers a beginner-friendly guide to

MySQL database management, covering database design, querying, and

administration.

https://ieeexplore.ieee.org/document/9648687/
https://ieeexplore.ieee.org/document/9648687/
https://ieeexplore.ieee.org/author/37089215091
https://ieeexplore.ieee.org/author/37085653398
https://ieeexplore.ieee.org/author/37085736488
https://ieeexplore.ieee.org/author/37085649353
https://ieeexplore.ieee.org/author/37085649353
https://ieeexplore.ieee.org/author/37086511494
https://ieeexplore.ieee.org/xpl/conhome/9648574/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9648574/proceeding
https://ieeexplore.ieee.org/document/8769463/
https://ieeexplore.ieee.org/author/37086921887
https://ieeexplore.ieee.org/author/37086921887
https://ieeexplore.ieee.org/author/37086922568
https://ieeexplore.ieee.org/author/37086920236
https://ieeexplore.ieee.org/author/37086920237
https://ieeexplore.ieee.org/xpl/conhome/8764481/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8764481/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8764481/proceeding
https://ieeexplore.ieee.org/document/8389415/
https://ieeexplore.ieee.org/author/37392830400
https://ieeexplore.ieee.org/author/37086399348
https://ieeexplore.ieee.org/author/37086399348
https://ieeexplore.ieee.org/xpl/conhome/8376163/proceeding
https://ieeexplore.ieee.org/document/8805705/
https://ieeexplore.ieee.org/document/8805705/
https://ieeexplore.ieee.org/author/38327489100
https://ieeexplore.ieee.org/author/37085614930
https://ieeexplore.ieee.org/author/37085614930
https://ieeexplore.ieee.org/author/37086947120
https://ieeexplore.ieee.org/author/37086951935
https://ieeexplore.ieee.org/author/38492290300
https://ieeexplore.ieee.org/xpl/conhome/8793213/proceeding
https://ieeexplore.ieee.org/document/10112262/
https://ieeexplore.ieee.org/author/37089826861
https://ieeexplore.ieee.org/author/37089827590
https://ieeexplore.ieee.org/author/37088758668
https://ieeexplore.ieee.org/author/37089827362
https://ieeexplore.ieee.org/author/37089457586
https://ieeexplore.ieee.org/xpl/conhome/10112209/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10112209/proceeding
https://ieeexplore.ieee.org/document/10291373/
https://ieeexplore.ieee.org/document/10291373/
https://ieeexplore.ieee.org/author/37090061441
https://ieeexplore.ieee.org/xpl/conhome/10291174/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10291174/proceeding

60

3. "WampServer: A Step-by-Step Guide" by Dr. Thomas D. Snyder - Provides a

detailed walkthrough of installing, configuring, and using WampServer for

local web development environments.

4. "Bootstrap 4 Quick Start" by Jacob Lett - Offers a quick and practical guide to

getting started with Bootstrap 4, covering its key features and components.

5. "Flask Web Development" by Miguel Grinberg - A comprehensive guide to

web development using Flask, covering topics such as routing, templates,

forms, databases, and deployment strategies.

6. "Python Crash Course" by Eric Matthes - An essential resource for beginners

to Python programming, covering core concepts and practical exercises.

7. "Learning MySQL" by Robin Nixon - A comprehensive guide to MySQL

database management, offering insights into database design, querying, and

administration.

8. "WampServer: A Step-by-Step Guide" by Dr. Thomas D. Snyder - A detailed

manual for installing, configuring, and utilizing WampServer as a local web

development environment.

9. "Bootstrap 4 Quick Start" by Jacob Lett - A concise introduction to Bootstrap

4, providing guidance on building responsive and visually appealing web

interfaces.

10. "Flask Web Development" by Miguel Grinberg - A definitive guide to web

development with Flask, covering routing, templates, forms, databases, and

deployment strategies.

11. "Python for Data Analysis" by Wes McKinney - An in-depth exploration of

using Python for data analysis tasks, including manipulation, visualization,

and statistical analysis.

12. "MySQL Cookbook" by Paul DuBois - A collection of practical solutions and

examples for common MySQL tasks, ranging from basic queries to advanced

database management techniques.

Web References

1. Python Tutorial for Beginners. Retrieved from w3schools.com

2. Flask Mega-Tutorial by Miguel Grinberg. Retrieved from

blog.miguelgrinberg.com

61

3. MySQL Workbench Documentation. Retrieved from dev.mysql.com

4. WampServer Official Website. Retrieved from wampserver.com

5. Bootstrap Documentation. Retrieved from getbootstrap.com

6. Flask Documentation. Retrieved from flask.palletsprojects.com

	Parking Station
	Architecture Diagram
	3.1.1. Disadvantage
	3.2.1. Advantage

	Table name: Parking Station

